Desarrollo galénico de un gel a base de Magnolia officinalis con propiedades antimicrobianas para el tratamiento del acné
DOI:
https://doi.org/10.53732/rccsalud/2025.e7122Palabras clave:
antimicrobianos, Magnolia officinalis, acné, gelesResumen
Introducción. El acné es una enfermedad inflamatoria multifactorial muy prevalente cuyo tratamiento convencional con antibióticos y retinoides se ve limitado por efectos adversos, resistencia bacteriana y baja adherencia. Esto impulsa la búsqueda de alternativas más seguras y eficaces, como los productos naturales. Magnolia officinalis contiene honokiol y magnolol, compuestos con actividad antimicrobiana y antiinflamatoria documentada. El desarrollo de formulaciones tópicas como geles permite optimizar su liberación cutánea, mejorar la estabilidad y facilitar la aplicación en piel grasa o acneica. Objetivo. Desarrollar y caracterizar un gel tópico a base de extracto de Magnolia officinalis con propiedades antimicrobianas para el tratamiento del acné. Materiales y métodos. Se formularon tres variantes de gel con diferentes proporciones de excipientes, seleccionándose la óptima según parámetros fisicoquímicos. Se realizaron controles de calidad (aspecto, pH, viscosidad, densidad, identificación por TLC) y se evaluó la actividad antimicrobiana frente a Staphylococcus aureus ATCC 25923 mediante métodos de difusión en disco y en pocillos. Resultados. La formulación seleccionada mostró pH 5,5, viscosidad de 159,7 cP, densidad 1,039 g/mL e identificación positiva del extracto por TLC. La evaluación antimicrobiana registró halos de inhibición promedio de 9,6 mm (discos) y 10,6 mm (pocillos) contra S. aureus. Conclusión. El gel desarrollado con Magnolia officinalis mostró propiedades fisicoquímicas adecuadas y una buena actividad antibacteriana in vitro contra S. aureus, sugiriendo su potencial como alternativa tópica natural, segura y sostenible para el manejo del acné.
Citas
Picardo M, Eichenfield LF, Tan J. Acne and Rosacea. Dermatol Ther (Heidelb). 2017;7(s1):43–52. https://doi.org/10.1007/s13555-016-0168-8
Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74(5):945-973.e33. http://dx.doi.org/10.1016/j.jaad.2015.12.037
Fox L, Csongradi C, Aucamp M, Du Plessis J, Gerber M. Treatment modalities for acne. Molecules. 2016;21(8):1–20. https://doi.org/10.3390/molecules21081063
Totté JEE, van der Feltz WT, Bode LGM, van Belkum A, van Zuuren EJ, Pasmans SGMA. A systematic review and meta-analysis on Staphylococcus aureus carriage in psoriasis, acne and rosacea. Eur J Clin Microbiol Infect Dis. 2016;35(7):1069–77. https://doi.org/10.1007/s10096-016-2647-3
Adler BL, Kornmehl H, Armstrong AW. Antibiotic resistance in acne treatment. JAMA Dermatology. 2017;153(8):810–1. https://doi.org/10.1001/jamadermatol.2017.1297
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci. 2024;25(10):5302. https://doi.org/10.3390/ijms25105302
Xue Z, Yan R, Yang B. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis. Phytochemistry. 2016;127:50–62. http://dx.doi.org/10.1016/j.phytochem.2016.03.011
Fontana R, Mattioli LB, Biotti G, Budriesi R, Gotti R, Micucci M, et al. Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target. Phyther Res. 2023;37(7):2915–38. http://doi.org/10.1002/ptr.7786
Cristea RM, Sava C, Căpățână C, Kanellou A. Phytochemical Analysis and Specific Activities of Bark and Flower Extracts from Four Magnolia Plant Species. Horticulturae. 2024;10(2):1–24. https://doi.org/10.3390/horticulturae10020141
Chellathurai BJ, Anburose R, Alyami MH, Sellappan M, Bayan MF, Chandrasekaran B, et al. Development of a Polyherbal Topical Gel for the Treatment of Acne. Gels. 2023;9(2):1–14. https://doi.org/10.3390/gels9020163
Sevinç-Özakar R, Seyret E, Özakar E, Adıgüzel MC. Nanoemulsion-Based Hydrogels and Organogels Containing Propolis and Dexpanthenol: Preparation, Characterization, and Comparative Evaluation of Stability, Antimicrobial, and Cytotoxic Properties. Gels. 2022;8(9):578. http://doi.org/10.3390/gels8090578
Ahmad A, Arfa FFDH, Asifa NS, Ika ZS, Safna Bina Nusriya, Tasya SN. Characterization and Application of Moisturizer In Skin Treatment: A Review. J Pakistan Assoc Dermatologists [Internet]. 2023;33(4)(4):1602–13. https://www.jpad.com.pk/index.php/jpad/article/view/2320
Mohammed Golam Rasul. Extraction, Isolation and Characterization of Natural Products from Medicinal Plants. Int J Basic Sci Appl Comput. 2018;2(6):1–6. https://www.ijbsac.org/wp-content/uploads/papers/v2i6/F0076122618.pdf
Salem Y, Rajha HN, Franjieh D, Hoss I, Manca ML, Manconi M, et al. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants. 2022;11(7):1–18. https://doi.org/10.3390/antiox11071348
Kronvall G, Ringertz S. Antibiotic disk diffusion testing revisited. Single strain regression analysis. Apmis. 1991;99(1-6):295–306. https://doi.org/10.1111/j.1699-0463.1991.tb05153.x
Chandrasekaran S, Abbott A, Campeau S, Zimmer BL, Weinstein M, Thrupp L, et al. Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of gram-negative bacteria: Preliminary report from the clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J Clin Microbiol. 2018;56(3). https://doi.org/10.1128/JCM.01678-17
Mummed B, Abraha A, Feyera T, Nigusse A, Assefa S. In Vitro Antibacterial Activity of Selected Medicinal Plants in the Traditional Treatment of Skin and Wound Infections in Eastern Ethiopia. Biomed Res Int. 2018;2018. http://doi.org/10.1155/2018/1862401
De Louvois J. Factors influencing the assay of antimicrobial drugs in clinical samples by the agar plate diffusion method. J Antimicrob Chemother. 1982;9(4):253–65. https://doi.org/10.1093/jac/9.4.253
Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC. Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phyther Res. 2001;15(2):139–41. https://doi.org/10.1002/ptr.736
Baker P, Huang C, Radi R, Moll SB, Jules E, Arbiser JL. Skin Barrier Function: The Interplay of Physical, Chemical, and Immunologic Properties. Cells. 2023;12(23):1–15. https://doi.org/10.3390/cells12232745
Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, et al. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon. 2022;8(2):e08938. https://doi.org/10.1016/j.heliyon.2022.e08938
Lukić M, Pantelić I, Savić SD. Towards optimal ph of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics. 2021;8(3):69. https://doi.org/10.3390/cosmetics8030069
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B. 2017;18(3):194–214. https://doi.org/10.1631/jzus.B1600299
Park J, Lee J, Jung E, Park Y, Kim K, Park B, et al. In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol. 2004;496(1-3):189–95. https://doi.org/10.1016/j.ejphar.2004.05.047
Lee J, Jung E, Park J, Jung K, Lee S, Hong S, et al. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-κB activation signaling. Planta Med. 2005;71(4):338–43. http://doi.org/10.1055/s-2005-864100














Todo el contenido de esta revista, está bajo